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We have studied the conformational properties of a flexible end-grafted chain �length N� with a rigid side
chain �length S� by means of Monte Carlo simulations. Depending on the lengths N and S and the branching
site b, we observe a considerable straightening of the flexible backbone as quantified via the gyration tensor.
For b=N, i.e., when attaching the side chain to the free end of the flexible backbone, the effect was strongest.
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I. INTRODUCTION

Polymers anchored on a locally flat substrate are of great
importance for functionalized surfaces in the material sci-
ences �1� and in biology �2�. A particular example for the
latter is the protective extracellular matrix of living cells that
is composed of the flexible polymer hyaluronic acid �HA� to
which semiflexible aggrecan chains are attached via linker
proteins �3,4�. The HA-aggrecan has recently received in-
creased attention as it is not only used to equip cells with a
protective layer but also plays an important role as a gliding
surface in the articular cartilage of synovial joints �4�. Un-
derstanding the material properties of the HA-aggrecan sys-
tem on the nano- and mesoscale are thus of key importance
when aiming at constructing biomimetic surfaces that mimic
the function of natural cartilages. In fact, on the single-
molecule scale the HA-aggrecan system can be simplified to
a flexible polymer attached to a planar substrate, with rigid
side chains.

Flexible, self-avoiding end-grafted polymers without side
chains have been studied extensively by theory, experiment,
and computational approaches �5,6�. Typically, a large set of
end-grafted polymers has been considered, where the graft-
ing density �, i.e., the distance between individual chains,
was varied �“polymer brush”�. In the limit of very low �, the
polymer chains can be considered as isolated entities, each
acquiring approximately a half-spherical shape �“mush-
room”� with a radius comparable to the Flory radius
RF=aN3/5 of a coil in a good solvent �7�. Here, a and N
denote the size of a monomer and the number of monomers,
respectively. In fact, a more detailed description of the poly-
mer shape requires the gyration tensor �8,9�:
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where r�i� is the position of the ith monomer with respect to
the center of mass of the polymer and indices m and n denote
its individual components. Using an orthogonal transforma-
tion, S can be converted to diagonal form with entries
L1

2�L2
2�L3

2 denoting the squared lengths of the principal
axes of gyration while the trace of S yields the squared ra-
dius of gyration. The associated eigenvectors of the gyration
ellipsoid are denoted by v1, v2, and v3, respectively.

The ratios of the principle axes of inertia quantify
the deviation of the polymer shape from a sphere. Using
Monte Carlo simulations it was shown that simple random
walks �RW� reveal a pronounced asphericity �“asphericity
of the RW”� mirrored in the asymptotic ratios
�L1

2� : �L2
2� : �L3

2�→1:2.7:12.0 �8,11�. Self-avoiding walks
�SAW� show an even more aspheric shape �1:2.98:14.0�
�10,11� that becomes more pronounced when attaching the
SAW with one end to a flat, solid substrate �1:3.0:14.9 for
N→�� �12�.

The conformational properties of polymer systems com-
prising side chains branching out from a flexible or semiflex-
ible backbone at varying density �“comb polymers”� have
also been considered extensively in theory and simulation
studies �13�. The flexibility of the entire complex has been
shown to be strongly influenced by the density of flexible
side chains �� with three scaling regimes in the case for a
free �i.e., not end-grafted� backbone �14,15�. One of the main
results was that attaching a large number of flexible side
chains stiffens an otherwise flexible backbone. Rigid side
chains induced larger local fluctuations of the backbone as
compared to flexible side chains �16�, yet the persistence
length of the entire complex was shown to grow superlinear
with the length of the side chains in contrast to the much
weaker dependency in the case of flexible side chains. In
other words, attaching a large number of rigid side chains
yields an efficient way to stiffen a flexible backbone.

Here, we investigate the conformation of a flexible, end-
grafted self-avoiding chain of length N with a single rigid
side chain �length S� by means of Monte Carlo simulations
�17�. We find that attaching the side chain leads to a consid-
erable anisotropic swelling of the flexible backbone and a
straightening to a more brushlike configuration. This phe-
nomenon does not only depend on N and S, but also on the
position b at which the side chain is attached. In particular,
we show that for fixed N and b the squared radius of gyration
Rg

2 rises sigmoidally from the unperturbed value R0
2 with in-

creasing S and levels off to a constant for S�b /2. In fact,
the side-chain dependent swelling of the backbone follows a
scaling relation with maximum value ��R0

2b3 /N2. Contrary
to an undisturbed end-grafted chain, the ratio Rend

2 /Rg
2 in-

creases with S, thus highlighting the successive breaking of
isotropy that is also mirrored in dramatic changes of the ra-
tios of the principle axes of gyration. Furthermore, for
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b	N and S�b /2, the distribution of normalized angles
� ����=1� between the surface normal of the impenetrable
substrate �cf. Fig. 1� and the longest axis of the backbone’s
gyration ellipsoid follows a Weibull distribution for all com-
binations N, b, and S.

II. SIMULATION METHOD

To simulate a flexible end-grafted polymer chain of length
N �i.e., having N+1 monomers�, we utilize a simple cubic
lattice with unity lattice spacing �which we have taken as our
unit of length�. Each monomer occupies a single lattice site
and self-avoidance is guaranteed by prohibiting multiple oc-
cupations. The polymer is considered in a good athermal
solvent, i.e., no interactions between the monomers besides
the self-avoidance are taken into account. The monomer with
index 0 is placed in the plane z=0, and the half-space z�0 is
chosen as impenetrable while the lattice is taken large
enough to avoid influences of any other boundary. A rigid
side chain of length S is attached at monomer b of the flex-
ible chain �counted from the grafted end�. Figure 1 shows a
two-dimensional sketch of the model.

The flexible chain is simulated using a Verdier-
Stockmayer-type algorithm allowing for kink and
90° /180°-crank shaft moves �see, e.g., Ref. �18��. Due to its
rigidity, the only possible moves of the side chain are rota-
tions by ±90° and 180° in the xy, yz, or xz plane, respec-
tively, around the branching site b. A side chain rotation can
be induced by a regular move �kink, crank� involving mono-
mer b or randomly without translocating monomer b, i.e., by
introducing a new type of move. In every attempt only those
moves are accepted that lead to self-avoiding conformations
while respecting the impenetrability of the substrate. Yet,
“during” a rotation process of the side chain the self-
avoidance can be violated. Due to the nonergodicity of all
local N-conserving algorithms for SAWs �19�, trapped con-
formations may occur that cannot be disentangled by the
used algorithm. To avoid an overrepresentation of trapped

conformations, the simulation is continued with a newly gen-
erated random conformation when the system appears to
have run into a dead end. In practice, it turned out that only
�10 out of 5�105 configurations for N=20 were trapped
while larger systems did not show any trapped configura-
tions. We attribute this observation to the larger phase space
of a longer polymer chain, i.e., the extremely rare trapped
conformations are not encountered.

III. RESULTS AND DISCUSSION

To investigate the behavior of the described polymer sys-
tem, we vary the lengths of the flexible backbone �N� and the
rigid side chain �S� as well as the branching site b at which
the side chain is attached to the backbone. As basic read-
outs, we then monitor the squared radius of gyration Rg

2, the
principle moments of gyration, and the angle 	 between the
longest axis of the gyration ellipsoid and the surface normal,
defined by cos 	=v3 ·ez /L3 �cf. Eq. �1��. All these quantities
are calculated from the backbone monomers only, in order to
study the conformational differences of an end-grafted poly-
mer with an attached side chain to one without.

We first determine the squared radius of gyration R0
2 and

the orientation angle 	 of the gyration ellipsoid for an end-
grafted flexible backbone �N=20, . . . ,200� without side
chain. In agreement with Ref. �12�, we observe an increase
R0

2�N2
 with 
	0.59 while the end-to-end distance is given
by Rend

2 	7.6R0
2 �Fig. 2�a��. In contrast, the average angle of

orientation �	� only depends very weakly on N and tends
linearly �i.e., without a plateau� towards an asymptotic value
�	�=55° �Fig. 2�b�, inset�. The entire probability density
function p�	� of the orientation angles for N=20 and 200 is
shown in Fig. 2�b�. Clearly, in both cases the mean �	� does
not coincide with the plateau of the most probable value of 	
near 90°, i.e., the gyration ellipsoid is most likely oriented
parallel to the substrate �“mushroom”�. It is noteworthy that
the plateaulike behavior of p�	� only emerges properly for
large N, while a too short polymer shows a slight decrease of
p�	� for 	→90°.

When attaching a rigid side chain of length S at position b
to the flexible backbone �length N�, we observe an increase
in the radius of gyration that depends on S, b, and N. A
representative example �N=100� is shown in Fig. 3�a�. The
squared radius of gyration increases sigmoidally from the
unperturbed value R0

2 with increasing S whereas the limiting
plateau strongly depends on b. The gross shape of the curves
can be rationalized by considering the limiting cases: for
S→0 and b→0 the unperturbed backbone has to be recov-
ered as the side chain vanishes or appears to be “glued” to
the substrate surface, respectively. For large S any further
increase of the side chain is not “felt” by the mushroomlike
backbone, i.e., the curve should level off to a constant. In
fact, we are able to collapse all data for the side-chain in-
duced difference �=Rg

2−R0
2 to a single master curve �Fig.

3�b�� for various combinations of N and b by the empirical
scaling:

x =
S

b
, y =

Rg
2 − R0

2

R0
2

N2

b3 . �2�

As a result of Eq. �2�, we clearly observe that ��R0
2b3 /N2 in

the plateau region. Thus for b=N �side chain attached to the

FIG. 1. Two-dimensional sketch of the self-avoiding polymer on
a lattice as described in the main text. A rigid side chain �gray� is
attached to the fully flexible end-grafted backbone at monomer b
�“branching site”�. The substrate is impenetrable, i.e., the chain con-
formations are restricted to the half-space z�0. Note that a chain of
length N consists of N+1 monomers.
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free end� the gain in length follows approximately ��N2

which is reminiscent of the behavior of flexible end-grafted
chains in the “regime of stretched chains” observed in poly-
mer brushes �7�.

In Fig. 4, we have plotted the ratio between the mean
squared end-to-end distance and the mean squared radius of
gyration, �= �Rend

2 � / �Rg
2�, as a function of S. For a simple,

free self-avoiding walk this ratio can be calculated to be
�=6 in the limit N→� while �	7.6 for a chain attached to
a solid substrate �see offset in Fig. 4 for S=0�. Attaching a
side chain results in a further increase of �, indicating that
�Rend

2 � grows faster than �Rg
2�. Again, the effect is strongest

for large values of S and b. This observation yields further
evidence that the side chain, due to imposing an excluded-
volume constraint, causes the flexible backbone to swell and
disentangle to a more straight conformation. This picture is
confirmed and refined by the subsequent results obtained
from the study of the gyration tensor.

While �Rg
2� measures the spherical size of a polymer, its

actual shape is better described by the dimensions of the
gyration ellipsoid L1, L2, and L3. The ratio �L1

2� : �L2
2� : �L3

2�
resembles the asphericity of the polymer. Our results show
that for growing S �L3

2� : �L1
2� increases up to a plateau at

S	0.5N that depends on b — analogous to �Rg
2�. For

N=100 and b=0.5N we obtain a maximum ratio of approxi-

mately 26:1, indicating a dramatically altered conformation
in comparison to a simple end-grafted chain, where 14.9:1 is
found �12�. The ratio is even higher for larger values of b,
that is, the backbone takes on a pronounced rodlike shape
due to the attached rigid side chain.

The ratio �L2
2� : �L1

2� between the two shorter axes of gyra-
tion shows a different behavior: For b�0.5N it changes only
marginally with increasing S and takes on a value of about
3.1:1 independent of b. In contrast, for b=0.5N a small but

FIG. 2. �a� The radius of gyration and the end-to-end distance
increase like R0

2�N2
 �
	0.59� for a flexible end-grafted chain
�without side chain�. �b� The probability density function p�	� of
the orientation angle of the polymer’s gyration ellipsoid shows a
plateaulike behavior for 	→90° in the limit of large N. Inset: The
average angle �	�, i.e., the first moment of p�	�, depends only
weakly on N with an asymptotic value �	�=55°.

FIG. 3. �a� The squared radius of gyration �Rg
2� increases sig-

moidally with the length of the side chain S /N and levels off at
increasing values with increasing b �here N=100�. �b� All curves
collapse to a single master curve when applying the scaling Eq. �2�.
Open black symbols: b /N=0.25, N=20, 60, 80, 100, and 120; filled
gray symbols: b /N=0.5, N=20, 50, 80, 100, and 120; and crosses:
b /N=0.75, N=20 and 100.

FIG. 4. The ratio �= �Rend
2 � / �Rg

2� of the squared end-to-end dis-
tance and radius of gyration of the backbone increases with increas-
ing length of the rigid side chain S /N �here N=100�.
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appreciable increase occurs leading to a saturation value of
4:1 for N=100.

To confirm our results and insights derived on the basis of
the gyration ellipsoid, we consider as complementary quan-
tities the average abundance n�90° � and n�180° � of angles
between neighboring links. Indeed, the ratio n�90° � :n�180° �
is a good measure for the persistence of a chain as a straight-
ening increases n�180° �, while a direct calculation of the
backbone’s persistence length suffers from the rather low
numbers of monomers in the backbone. For an unperturbed
chain, we have four possibilities to find an angle of 90° and
one for 180°, i.e., n�90° � :n�180° � can be at best 4:1. Due to
the self-avoidance, however, the ratio is 3.45:1 �as deter-
mined from an unperturbed chain with N=100�. Attaching
the rigid side chain at position b, we find for N=101,
b=50, and S /b=0.4 �i.e., not yet in the saturation regime of
Fig. 3� a ratio n�90° � :n�180° �=3.1:1 for the monomers be-
low b. In other words, below the branching point b an angle
of 180° is found more often, thus confirming the straighten-
ing of the backbone. Interestingly, the persistence of the
backbone above the branching point is approximately that of
an unperturbed chain.

We next consider the orientation of the backbone in terms
of the distribution of orientation angles p�	� between the
longest principle axis of gyration v3 and the surface normal.
As can be seen in Fig. 5�a� for the representative example
N=100, elongating the side chain leads to a considerable
decrease of the average angle �	�, indicating a more brush-
like configuration of the backbone. This straightening be-

comes more pronounced when the branching site b is moved
towards the free end of the backbone, i.e., for large S and
b→N the backbone deviates from the surface normal by less
than 20°. Concomitant to the decrease of the average orien-
tation angle, the entire distribution p�	� changes and as-
sumes a more compact, i.e., narrow shape around the mean
�	� for large S �Fig. 5�b��. The decrease in width of the
distribution accompanying the decrease of the average high-
lights the brushlike conformation of the backbone.

Indeed, the compact shape of p�	� is a generic feature of
the backbone for b→N and large S. This is reflected by the
fact that all distributions can be collapsed to a single master
curve

p��� =
k�k−1

k exp
− ��


�k �3�

with k	2, 	1, when considering the normalized angle �
=	 / �	� and fixing b /N=const and S /N=const �Fig. 6�.

IV. CONCLUSIONS

We conducted Monte Carlo simulations using a flexible
polymer backbone, end-grafted to a solid substrate, with a
rigid side chain attached to it. From the behavior of the back-
bone’s radius of gyration and the length and orientation of its
longest principle axis of gyration, we are able to conclude
that attaching a rigid side chain leads to a straightening of the
backbone to a more brushlike configuration. Depending on
the side chain length S and the branching site b, the radius of
gyration and the gyration component perpendicular to the
substrate is enhanced while the average orientation tends to-
wards the surface normal. The effects of the side chain are
strongest in the case of large b and S.

For an undisturbed end-grafted chain �Fig. 2�b�� the prob-
ability density p�	� shows a plateau for angles near to 90°,
resembling a coiled conformation �mushroom�. Attaching a
stiff side chain leads to a shift to smaller angles and a nar-
rowing of p�	� �Fig. 5�b��. It is found that p�	� can be
scaled using a Weibull distribution �Eq. �3��. According to
the changes of p�	� the arithmetic mean �	� changes starting
at about 55° in the case of an undisturbed chain to smaller

FIG. 5. �a� The average angle �	� between the longest axis of
gyration and the substrate normal decreases for increasing lengths
of the side chain S /N, indicating a straightening of the backbone.
Moving the branching site b towards the free end of the backbone
strongly enhances this straightening. �b� The entire distribution
p�	� shifts and becomes more narrow as S /N is decreased �here
N=100�.

FIG. 6. Normalizing the average angle, i.e., setting �=	 / �	�,
for b	N leads to a collapse of all distributions p��� for various
N ,S with S /N=0.3 �symbols�. The curve is best described by Eq.
�3� �full line�.
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values when a side chain is attached �Fig. 5�a��.
The behavior of the radius of gyration as well as of the

ratio �Rend
2 � / �Rg

2� indicates a swelling and straightening of the
backbone due to the presence of the stiff side chain. The
backbone’s change from a mushroom to a more rodlike con-
formation is also reflected in the ratios between the axes of
gyration: While the two smaller principal axes only show
minor changes, the longest principal axis is increased mani-
fold, e.g., 26-fold for b /N=1/2. Furthermore, the increase in
the radius of gyration follows an empirical scaling with
maximum value b3 /N2 which implicates a more brushlike
growth of Rg

2 with the backbone length N.
It will be interesting to examine the influence of semiflex-

ibility of the side chain to obtain a more realistic representa-

tion of the above described HA-aggrecan system. To ap-
proach the biological setting, e.g., the protective extracellular
matrix, the phase diagram of end-grafted polymers with an
attached side chain at varying surface densities will be of
great interest. Work along these lines is currently underway.
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